Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

VoteDock: Consensus docking method for prediction of protein–ligand interactions

Identifieur interne : 002503 ( Main/Exploration ); précédent : 002502; suivant : 002504

VoteDock: Consensus docking method for prediction of protein–ligand interactions

Auteurs : Dariusz Plewczynski [Pologne] ; Michał Ła Niewski [Pologne] ; Marcin Von Grotthuss [États-Unis] ; Leszek Rychlewski [Pologne] ; Krzysztof Ginalski [Pologne]

Source :

RBID : ISTEX:1621E659B6DFEDAA19A47A9A199BA0FE5626530A

English descriptors

Abstract

Molecular recognition plays a fundamental role in all biological processes, and that is why great efforts have been made to understand and predict protein–ligand interactions. Finding a molecule that can potentially bind to a target protein is particularly essential in drug discovery and still remains an expensive and time‐consuming task. In silico, tools are frequently used to screen molecular libraries to identify new lead compounds, and if protein structure is known, various protein–ligand docking programs can be used. The aim of docking procedure is to predict correct poses of ligand in the binding site of the protein as well as to score them according to the strength of interaction in a reasonable time frame. The purpose of our studies was to present the novel consensus approach to predict both protein–ligand complex structure and its corresponding binding affinity. Our method used as the input the results from seven docking programs (Surflex, LigandFit, Glide, GOLD, FlexX, eHiTS, and AutoDock) that are widely used for docking of ligands. We evaluated it on the extensive benchmark dataset of 1300 protein–ligands pairs from refined PDBbind database for which the structural and affinity data was available. We compared independently its ability of proper scoring and posing to the previously proposed methods. In most cases, our method is able to dock properly approximately 20% of pairs more than docking methods on average, and over 10% of pairs more than the best single program. The RMSD value of the predicted complex conformation versus its native one is reduced by a factor of 0.5 Å. Finally, we were able to increase the Pearson correlation of the predicted binding affinity in comparison with the experimental value up to 0.5. © 2010 Wiley Periodicals, Inc. J Comput Chem 32: 568–581, 2011

Url:
DOI: 10.1002/jcc.21642


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">VoteDock: Consensus docking method for prediction of protein–ligand interactions</title>
<author>
<name sortKey="Plewczynski, Dariusz" sort="Plewczynski, Dariusz" uniqKey="Plewczynski D" first="Dariusz" last="Plewczynski">Dariusz Plewczynski</name>
</author>
<author>
<name sortKey="La Niewski, Michal" sort="La Niewski, Michal" uniqKey="La Niewski M" first="Michał" last="Ła Niewski">Michał Ła Niewski</name>
</author>
<author>
<name sortKey="Grotthuss, Marcin Von" sort="Grotthuss, Marcin Von" uniqKey="Grotthuss M" first="Marcin Von" last="Grotthuss">Marcin Von Grotthuss</name>
</author>
<author>
<name sortKey="Rychlewski, Leszek" sort="Rychlewski, Leszek" uniqKey="Rychlewski L" first="Leszek" last="Rychlewski">Leszek Rychlewski</name>
</author>
<author>
<name sortKey="Ginalski, Krzysztof" sort="Ginalski, Krzysztof" uniqKey="Ginalski K" first="Krzysztof" last="Ginalski">Krzysztof Ginalski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1621E659B6DFEDAA19A47A9A199BA0FE5626530A</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/jcc.21642</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-TGTW0PBS-8/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002387</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002387</idno>
<idno type="wicri:Area/Istex/Curation">002387</idno>
<idno type="wicri:Area/Istex/Checkpoint">000432</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000432</idno>
<idno type="wicri:doubleKey">0192-8651:2011:Plewczynski D:votedock:consensus:docking</idno>
<idno type="wicri:Area/Main/Merge">002528</idno>
<idno type="wicri:Area/Main/Curation">002503</idno>
<idno type="wicri:Area/Main/Exploration">002503</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">VoteDock: Consensus docking method for prediction of protein–ligand interactions</title>
<author>
<name sortKey="Plewczynski, Dariusz" sort="Plewczynski, Dariusz" uniqKey="Plewczynski D" first="Dariusz" last="Plewczynski">Dariusz Plewczynski</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a Street, 02‐106 Warsaw</wicri:regionArea>
<wicri:noRegion>02‐106 Warsaw</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Pologne</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Correspondence address: Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a Street, 02‐106 Warsaw</wicri:regionArea>
<wicri:noRegion>02‐106 Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="La Niewski, Michal" sort="La Niewski, Michal" uniqKey="La Niewski M" first="Michał" last="Ła Niewski">Michał Ła Niewski</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a Street, 02‐106 Warsaw</wicri:regionArea>
<wicri:noRegion>02‐106 Warsaw</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Street, Warsaw</wicri:regionArea>
<wicri:noRegion>Warsaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grotthuss, Marcin Von" sort="Grotthuss, Marcin Von" uniqKey="Grotthuss M" first="Marcin Von" last="Grotthuss">Marcin Von Grotthuss</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Department of Chemistry and Chemical Biology, Harvard University, Cambridge</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rychlewski, Leszek" sort="Rychlewski, Leszek" uniqKey="Rychlewski L" first="Leszek" last="Rychlewski">Leszek Rychlewski</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>BioInfoBank Institute, Poznan</wicri:regionArea>
<wicri:noRegion>Poznan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ginalski, Krzysztof" sort="Ginalski, Krzysztof" uniqKey="Ginalski K" first="Krzysztof" last="Ginalski">Krzysztof Ginalski</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5a Street, 02‐106 Warsaw</wicri:regionArea>
<wicri:noRegion>02‐106 Warsaw</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Computational Chemistry</title>
<title level="j" type="alt">JOURNAL OF COMPUTATIONAL CHEMISTRY</title>
<idno type="ISSN">0192-8651</idno>
<idno type="eISSN">1096-987X</idno>
<imprint>
<biblScope unit="vol">32</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="568">568</biblScope>
<biblScope unit="page" to="581">581</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-03">2011-03</date>
</imprint>
<idno type="ISSN">0192-8651</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0192-8651</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>3dscore</term>
<term>Active site</term>
<term>Algorithm</term>
<term>Autodock</term>
<term>Benchmark</term>
<term>Benchmarking</term>
<term>Best docking program</term>
<term>Best program</term>
<term>Binding prediction</term>
<term>Chem</term>
<term>Comput</term>
<term>Comput chem</term>
<term>Computational</term>
<term>Computational chemistry</term>
<term>Conformation</term>
<term>Conformers</term>
<term>Consensus</term>
<term>Consensus algorithms</term>
<term>Consensus approach</term>
<term>Consensus docking method</term>
<term>Consensus method</term>
<term>Corina</term>
<term>Database</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Docking</term>
<term>Docking accuracy</term>
<term>Docking program</term>
<term>Docking programs</term>
<term>Docking results</term>
<term>Ehits</term>
<term>Flexx</term>
<term>Individual docking programs</term>
<term>Ligand</term>
<term>Ligand size</term>
<term>Ligandfit</term>
<term>Metapose</term>
<term>Metascore</term>
<term>Nally</term>
<term>Omega2</term>
<term>Optimization</term>
<term>Pdbbind</term>
<term>Pearson correlation</term>
<term>Plewczynski</term>
<term>Protein target</term>
<term>Receptor</term>
<term>Rmsd</term>
<term>Rmsd value</term>
<term>Rmsd values</term>
<term>Rotatable bonds</term>
<term>Score conformation</term>
<term>Software</term>
<term>Spearman</term>
<term>Spearman correlations</term>
<term>Subset</term>
<term>Vote2</term>
<term>Vote7</term>
<term>Votedock</term>
<term>Wang</term>
<term>Whole benchmarking dataset</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular recognition plays a fundamental role in all biological processes, and that is why great efforts have been made to understand and predict protein–ligand interactions. Finding a molecule that can potentially bind to a target protein is particularly essential in drug discovery and still remains an expensive and time‐consuming task. In silico, tools are frequently used to screen molecular libraries to identify new lead compounds, and if protein structure is known, various protein–ligand docking programs can be used. The aim of docking procedure is to predict correct poses of ligand in the binding site of the protein as well as to score them according to the strength of interaction in a reasonable time frame. The purpose of our studies was to present the novel consensus approach to predict both protein–ligand complex structure and its corresponding binding affinity. Our method used as the input the results from seven docking programs (Surflex, LigandFit, Glide, GOLD, FlexX, eHiTS, and AutoDock) that are widely used for docking of ligands. We evaluated it on the extensive benchmark dataset of 1300 protein–ligands pairs from refined PDBbind database for which the structural and affinity data was available. We compared independently its ability of proper scoring and posing to the previously proposed methods. In most cases, our method is able to dock properly approximately 20% of pairs more than docking methods on average, and over 10% of pairs more than the best single program. The RMSD value of the predicted complex conformation versus its native one is reduced by a factor of 0.5 Å. Finally, we were able to increase the Pearson correlation of the predicted binding affinity in comparison with the experimental value up to 0.5. © 2010 Wiley Periodicals, Inc. J Comput Chem 32: 568–581, 2011</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pologne</li>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Plewczynski, Dariusz" sort="Plewczynski, Dariusz" uniqKey="Plewczynski D" first="Dariusz" last="Plewczynski">Dariusz Plewczynski</name>
</noRegion>
<name sortKey="Ginalski, Krzysztof" sort="Ginalski, Krzysztof" uniqKey="Ginalski K" first="Krzysztof" last="Ginalski">Krzysztof Ginalski</name>
<name sortKey="La Niewski, Michal" sort="La Niewski, Michal" uniqKey="La Niewski M" first="Michał" last="Ła Niewski">Michał Ła Niewski</name>
<name sortKey="La Niewski, Michal" sort="La Niewski, Michal" uniqKey="La Niewski M" first="Michał" last="Ła Niewski">Michał Ła Niewski</name>
<name sortKey="Plewczynski, Dariusz" sort="Plewczynski, Dariusz" uniqKey="Plewczynski D" first="Dariusz" last="Plewczynski">Dariusz Plewczynski</name>
<name sortKey="Plewczynski, Dariusz" sort="Plewczynski, Dariusz" uniqKey="Plewczynski D" first="Dariusz" last="Plewczynski">Dariusz Plewczynski</name>
<name sortKey="Rychlewski, Leszek" sort="Rychlewski, Leszek" uniqKey="Rychlewski L" first="Leszek" last="Rychlewski">Leszek Rychlewski</name>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Grotthuss, Marcin Von" sort="Grotthuss, Marcin Von" uniqKey="Grotthuss M" first="Marcin Von" last="Grotthuss">Marcin Von Grotthuss</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002503 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002503 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1621E659B6DFEDAA19A47A9A199BA0FE5626530A
   |texte=   VoteDock: Consensus docking method for prediction of protein–ligand interactions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021